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Abstract 

 

Background: Individual differences in functional brain connectivity can be used to predict both 

the presence of psychiatric illness and variability in associated behaviors. However, despite 

evidence for sex differences in functional network connectivity and in the prevalence, 

presentation, and trajectory of psychiatric illnesses, the extent to which disorder-relevant 

aspects of network connectivity are shared or unique across the sexes remains to be 

determined.  

Methods: In this work, we used predictive modeling approaches to evaluate whether shared or 

unique functional connectivity correlates underlie the expression of psychiatric illness-linked 

behaviors in males and females in data from the Adolescent Brain Cognitive Development study 

(n=5260; 2571 females).  

Results: We demonstrate that functional connectivity profiles predict individual differences in 

externalizing behaviors in males and females, but only predict internalizing behaviors in 

females. Furthermore, models trained to predict externalizing behaviors in males generalize to 

predict internalizing behaviors in females, and models trained to predict internalizing behaviors 

in females generalize to predict externalizing behaviors in males. Finally, the neurobiological 

correlates of many behaviors are largely shared within and across sexes: functional connections 

within and between heteromodal association networks including default, limbic, control, and 

dorsal attention networks are associated with internalizing and externalizing behaviors.  

Conclusions: Taken together, these findings suggest that shared neurobiological patterns may 

manifest as distinct behaviors across the sexes. Based on these results, we recommend that 

both clinicians and researchers carefully consider how sex may influence the presentation of 

psychiatric illnesses, especially those along the internalizing-externalizing spectrum.  
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Introduction 

A primary aim of research in psychiatry is to establish the neurobiological correlates of illness-

relevant behaviors, facilitating illness prediction, diagnosis, and treatment. Critical to this goal is 

the consideration of associated individual differences, for instance underlying sex differences. 

Females are more likely to be diagnosed with affective and anxiety disorders, while males are 

more likely to meet diagnostic criteria for antisocial and substance use disorders(1-3). Relatedly, 

across cultures, females are more likely to express internalizing behaviors directed at one-self 

(e.g., loneliness) while males are more likely to exhibit externalizing behaviors directed at others 

or the environment (e.g., aggression)(3, 4). These differences emerge across childhood, 

become more evident during adolescence, and persist throughout the lifespan(2). While sex 

differences in the prevalence and expression of psychiatric illnesses have been extensively 

studied at the population-level(5), the underlying neurobiological correlates are not yet fully 

understood. Genetics, hormones, immunology, neurobiology, environment, and a host of 

psychosocial factors all likely contribute to expressed behaviors and these contributions may 

vary across disorders and throughout the lifespan(2). One possibility is that these factors 

uniquely contribute to distinct biological underpinnings and associated behavioral expression 

patterns across the sexes. An alternative, but not mutually exclusive possibility, is that shared 

biological features may link to dissociable behaviors across the sexes. A thorough 

understanding of the sex differences that exist in the neurobiological correlates of psychiatric 

illness-relevant behaviors will facilitate the development and implementation of sex-specific and 

personalized preventative interventions, diagnostic procedures, and therapeutic modalities.  

 

Functional magnetic resonance imaging is a non-invasive neuroimaging technique to estimate 

regional neural activation, as inferred though the detection of changes in blood oxygenation 

levels. Correlations between these signals can be used to quantify the functional coupling (or 

connectivity) between pairs of brain regions. While sex differences in the functional activation 

and organization of the brain have been extensively studied, there are few reliable sex/gender 

differences and many reproducible findings are largely driven by differences in brain size(6). 

Functional connectivity profiles exhibit various sex differences throughout the lifespan(7-12). 

Females have greater within-network connectivity while males have greater between-network 

connectivity(9). These differences are modulated by brain size(13), genetics(14) and hormonal 

fluctuations(15-18), but must also reflect other biological, social, and environmental influences. 

Prior analyses have found that functional connections within and between heteromodal 

networks, and particularly the default and frontoparietal control networks, are largely driving 
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these differences(10, 12). Intriguingly, functional disruptions within and between the default and 

control networks, along with the salience network, are implicated in a range of psychiatric 

phenotypes(19). While sex differences in functional connectivity have been studied extensively, 

it is not yet known whether there are sex differences in the associations between functional 

connectivity and psychiatric illness-linked behaviors.  

 

Over the last decade, data-driven predictive modeling approaches have become increasingly 

used to study brain-behavior relationships(20). These approaches can generate individual-level 

clinically informative predictions of diagnosis, symptom profile, and treatment response and 

identify the underlying neurobiology associated with distinct behaviors(20). Through these 

approaches, functional connectivity can predict individual differences in cognition, personality, 

and mental health(21-26). These models have been used to establish the neurobiological 

correlates of attention(27, 28), memory(29), anxiety(30), depression(31), psychosis(32), and 

substance abuse(33, 34). When developing predictive models, it is crucial to ensure that they 

are not only accurate within circumscribed groups but that they can also generalize across 

populations. Prior work indicates that predictions of cognitive and personality traits can fail to 

generalize across sexes(22, 35-37). To circumvent these issues–and given the known sex 

differences in psychiatric illnesses–the use of sex-specific prediction models may yield more 

accurate and generalizable predictions and provide insight into sex differences in the 

neurobiological correlates of psychiatric illnesses. Moreover, the examination of these brain-

behavior relationships in children can reveal whether sex differences emerge prior to 

adolescence when many of the differences in psychiatric illness risk and presentation become 

more evident.  

 

Here, we sought to identify whether shared or unique neurobiological correlates underlie the 

expression of distinct psychiatric illness-linked behaviors across the sexes during childhood. To 

do so, we quantified the functional connectivity correlates of 17 distinct psychiatric illness-

relevant behaviors in children from the Adolescent Brain Cognitive Development (ABCD) 

dataset. By examining differences in predictive accuracy across sexes and behaviors, we 

demonstrate that externalizing behaviors can be accurately predicted in males and females, but 

internalizing behaviors can only be successfully predicted in females. Next, we determine that 

predictive models generalize within domains both within and between sexes, but only generalize 

across domains between sexes. Specifically, models trained to predict externalizing behaviors 

in either sex generalize to predict related behaviors in both sexes. However, models trained to 

Jo
urn

al 
Pre-

pro
of



 5 

predict externalizing behaviors in males also generalize to predict internalizing behaviors in 

females, and models trained to predict internalizing behaviors in females generalize to predict 

externalizing behaviors in males. Investigating the network correlates of these behaviors, we 

reveal that functional connectivity within and between shared heteromodal association networks 

are associated with internalizing and externalizing behaviors, and these correlates are shared 

across the sexes. Collectively, these results suggest that shared aspects of neurobiology may 

underlie distinct behaviors across the sexes. As such, these findings may change the way 

clinicians consider sex when diagnosing psychiatric disorders across the internalizing-

externalizing spectrum.    
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Methods 

Dataset 

We included 5260 children (2571 females, ages 9-10; Figure 1A) from the Adolescent Brain 

Cognitive Development (ABCD) 2.0.1 release(38). After quality control of imaging data(24, 39), 

we filtered participants based on availability of functional MRI scans and behavioral scores. 

Detailed information about our sample construction is in the supplemental methods along with 

demographic information (age, race/ethnicity, and income) for subjects included and excluded 

from these analyses (Table S1).  

 

Behavioral Data 

We included eight syndrome scales and three summary scores from the Child Behavior 

Checklist(40), and six DSM-5 oriented scales for a total of 17 behavioral scores (Figure 1B). 

Details about the scales and behavioral scores are in the supplemental methods. We used non-

parametric Mann-Whitney U rank tests to evaluate sex differences in the behavioral scores. All 

p-values were corrected for multiple comparisons using the Benjamini-Hochberg False 

Discovery Rate (q=0.05) procedure(41). We also computed non-parametric correlations 

between the behavioral scores for each sex to evaluate any underlying relationships that may 

exist between the behavioral scores and influence subsequent analyses. Finally, we computed 

full correlations between summary motion data (mean framewise displacement) and behavioral 

scores to determine whether residual motion artifacts could be driving behavioral prediction 

performance.  

 

Image Acquisition and Processing 

The minimally preprocessed resting-state functional MRI data were processed as previously 

described(24, 42). Key processing steps are summarized in the supplemental methods. Once 

processed, we extracted regional time series for 400 cortical(43) and 19 subcortical(44) parcels 

(Figure 1C). Full correlations were computed between those time series yielding a 419x419 

pairwise regional functional connectivity matrix (Figure 1D).  

 

Predictive Modeling  

Linear regression models and deep learning algorithms achieve comparable accuracies for 

brain-based behavioral predictions(25), but linear models avoid overfitting, are more 

interpretable, and are less computationally expensive(20). The predictive models used here rely 

on a similar framework as those previously described(21, 22, 45) to perform novel analyses 
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addressing cross-behavioral model generalization within and across the sexes in the context of 

psychiatric illness-linked behaviors. We used sex-specific cross-validated linear ridge regression 

models to predict each behavioral score based on functional connectivity data while accounting 

for site (Figure 1E). Model performance was evaluated using prediction accuracy within each 

sex and behavior and model generalizability across sexes and behaviors. We also evaluated 

whether models performed better than chance using null distributions(46). To ensure model 

generalizability was not driven by correlations in the underlying behavioral data, we computed 

the full correlation between the (upper triangular) model generalizability matrix and behavioral 

correlation matrix for each sex. We also extracted feature weights from the models and 

transformed them using the Haufe transformation(47) to increase their interpretability and 

reliability(24, 42, 48). We then summarized pairwise regional feature weights at a network-level 

to support interpretability as previously described(22). Details about the modeling approach, 

significance testing, Haufe transformation, and summarization of feature weights to a network-

level are in the supplemental methods. 

 

Data and Code Availability 

All ABCD data can be accessed via the NIMH Data Archive. All code used to generate the 

results are available on GitHub 

[https://github.com/elvisha/ABCD_sexspecific_clinicalpredictions].   
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Results 

Males and females exhibit overlapping behaviors 

Males and females exhibit largely overlapping distributions of behavioral scores (Figure S1A, 

Table S2), but there are significant (corrected ps<0.01) sex differences in the 

withdrawn/depressed, somatic complaints, externalizing, rule-breaking, aggressive, thought 

problems, attention problems, and total problems syndrome scales, as well as affective, 

somatic, oppositional defiant, conduct, and ADHD DSM-5 oriented scales. Across the scores 

with sex differences, males report greater scores in all behaviors apart from somatic complaints 

and somatic problems.  

 

Within each sex, behavioral scores are strongly correlated within behavioral domains (Figure 

S1B). Correlations between internalizing scores range from 0.27 to 0.91 in males, and 0.28 to 

0.92 in females. Correlations between externalizing scores range from 0.53 to 0.96 in males, 

and 0.51 to 0.96 in females. Meanwhile, correlations across behavioral domains are numerically 

weaker. Correlations between internalizing and externalizing scores range from 0.23 to 0.55 in 

males, and 0.25 to 0.52 in females.  

 

Behavioral scores are not correlated with motion (Table S3).  

 

Here, we replicate prior findings demonstrating sex differences in the prevalence of behaviors 

associated with an increased risk for illness onset and provide evidence suggesting that these 

differences may emerge prior to adolescence. These findings also suggest that predictive 

models may be more likely to generalize within sexes rather than across sexes. Additionally, we 

observe similar relationships between psychiatric illness-linked behaviors in males and females. 

These observed relationships suggest that models may be more likely to generalize within 

behavioral domains rather than across behavioral domains.   
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Brain-based predictive models predict psychiatric illness-linked behaviors 

Linear ridge regression models were trained to predict psychiatric illness-linked behaviors in 

males and females based on functional connectivity. Model accuracies, defined as the 

correlation between true and predicted scores, were evaluated in comparison to null models 

(Figure 2A).   

 

In males, models successfully predict behaviors (corrected p<0.05) within the externalizing 

domain (externalizing (r=0.12), rule-breaking (r=0.14), and aggressive (r=0.10) behaviors), 

along with attention (r=0.13), social (r=0.12), and total (r=0.11) problems, as well as behaviors 

related to oppositional defiant (r=0.08), conduct (r=0.13), and attention deficit/hyperactivity 

(ADHD; r=0.12) disorders.  

 

In females, models successfully predict behaviors (corrected p<0.05) within the internalizing 

(withdrawn/depressed (r=0.09)) and externalizing domains (externalizing (r=0.11), rule-breaking 

(r=0.15), and aggressive (r=0.09) behaviors), along with attention (r=0.11) and social (r=0.07) 

problems, as well as behaviors related to conduct disorders (r=0.14) and ADHD (r=0.08).  

 

In prior work, we observed that internalizing behaviors are more difficult to predict than 

externalizing behaviors(24). Here, we replicate those findings and further suggest that the 

predictability of specific behaviors may differ across the sexes.   
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Brain-based predictive models generalize across sexes and behaviors 

Generalizability, defined as the prediction accuracy obtained when a model is evaluated on a 

population and/or behavior distinct from the population and/or behavior it was trained on, was 

evaluated across sexes and behaviors (Figure 2B). Model generalizability was not related to the 

behavioral correlations in males (r=0.07, p=0.43) or females (r=0.10, p=0.27).  

 

Models trained in males (Figure 2B, top row) to predict externalizing syndromes, attention, 

social, and total problems, as well as behaviors related to oppositional defiant disorder, conduct 

disorder, and ADHD generalize (corrected p<0.05) across those behaviors in both sexes. These 

models also generalize (corrected p<0.05) to predict internalizing (specifically 

withdrawn/depressed) syndromes and behaviors related to affective disorders in females, but 

not in males (dashed boxes). Additionally, models trained to predict internalizing syndromes and 

affective behaviors weakly generalize (corrected p<0.05) to predict some externalizing 

syndromes, attention problems, and behaviors related to ADHD in both sexes.  

 

Models trained in females (Figure 2B, bottom row) to predict externalizing syndromes, attention, 

and social problems, as well as behaviors related to conduct disorders and ADHD generalize 

(corrected p<0.05) across those behaviors in both sexes. Surprisingly, these models exhibit 

generally greater generalizability in males (bottom left panel) than in females (bottom right 

panel). Moreover, models trained to predict internalizing syndromes (specifically 

withdrawn/depressed) and affective behaviors generalize (corrected p<0.05) to predict 

externalizing syndromes, thought, attention, social, and total problems, and behaviors related to 

oppositional defiant disorder, conduct disorder, and ADHD in males (dashed boxes). Similar 

results are also observed when generalizing (corrected p<0.05) within females but to a lesser 

extent.   

 

These results suggest that brain-based predictive models trained in one domain can generalize 

to predict other related behaviors within the same domain, and this generalizability is not driven 

by the underlying correlations between the behaviors. Models may also generalize to predict 

behaviors in unrelated domains and this generalizability may be more evident across sexes 

rather than within sexes. The greater predictability we observe in males reflects those previously 

reported for cognitive predictions(22, 49), and may represent underlying differences in the 

strengths of brain-behavior relationships and the signal-to-noise ratio in behavioral scores.  
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Functional correlates are shared across behaviors and sexes 

Pairwise regional feature weights were extracted from the models and Haufe-transformed. 

Correlations between these Haufe-transformed feature weights were analyzed across both 

sexes and all behaviors (Figure 3).  

 

Feature weights are strongly correlated across behaviors and sexes, and the strongest 

correlations are observed within behavioral domains (solid boxes). One notable exception is the 

features involved in the prediction of anxious/depressed behaviors and somatic complaints, as 

well as anxiety and somatic diagnoses in both sexes as they exhibit generally weak correlations 

with features for all other predictions including those within the internalizing domain, but strong 

positive correlations with each other (rows and columns corresponding to those behaviors). 

 

In prior work, we demonstrated that shared features predict a smaller subset of psychiatric 

illness-linked behaviors(24). Here, we replicate those findings in a larger set of behaviors within 

the mental health domain and demonstrate that even though males and females may exhibit 

behavioral differences, shared neurobiological features underlie their expression.  
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Functional connectivity within and between heteromodal association networks predict 

psychiatric illness-linked behaviors  

Regional pairwise feature weights were summarized within the Yeo 17-network solution(50). 

Positive and negative feature weights were separately averaged to yield positive and negative 

network-level associations. For simplicity, we show the corresponding network-level features for 

two behaviors (withdrawn/depressed and rule-breaking) characteristic of internalizing and 

externalizing domains in Figures 4-5, and for all other behaviors in the supplemental materials 

(Figures S3-S16). Correlations between these associations across the sexes are shown in 

Table S4.  

 

Functional connectivity within and between distinct heteromodal networks (e.g., temporal 

parietal, default, control, limbic, and attention) networks are positively and negatively associated 

with withdrawn/depressed behaviors (Figure 4). These associations are largely shared across 

the sexes (rpositive=0.89,  rnegative=0.72). Functional connections positively and negatively 

associated with rule-breaking behaviors (Figure 5) are largely similar to those associated with 

withdrawn/depressed behaviors and are also shared across the sexes (rpositive=0.90 for positive, 

and rnegative=0.94). Similar results are also observed for all other behavioral scores predicted.  

 

These findings are in line with prior work demonstrating that functional connections in 

heteromodal association networks are largely implicated in a wide range of psychiatric 

illnesses(51-54). We further demonstrate that shared functional connectivity correlates underlie 

internalizing and externalizing behaviors across the sexes. Altogether, these findings suggest 

that shared neurobiological correlates are likely to be observed across internalizing and 

externalizing behaviors.  
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Discussion 

Brain-based predictive modeling has provided foundational insights into the neurobiological 

correlates of psychiatric illness(20, 55-57). While associations between functional connectivity 

and distinct psychiatric illnesses and behaviors have been studied extensively, prior work has 

not yet addressed whether those relationships are shared across the sexes. The expression of 

psychiatric illnesses is known to differ across the sexes, but it is not clear whether these 

differences map onto functional connectivity. Here, we demonstrate in a large sample of 5260 

children from the ABCD dataset that functional connectivity profiles predict externalizing 

behaviors in males and females, but internalizing behaviors are generally only predictable in 

females. Models trained to predict behaviors within a given domain generalize to predict related 

behaviors within and between sexes. Moreover, models trained to predict externalizing 

behaviors in males can predict internalizing behaviors in females. Likewise, models trained to 

predict internalizing behaviors in females can predict externalizing behaviors in males. Across 

both sexes, functional connections within and between heteromodal association networks 

underlie the expression of internalizing and externalizing behaviors. Taken together, these 

results reveal that shared disruptions in functional connectivity can manifest as distinct 

psychiatric illness-linked behaviors across the sexes.  

 

Psychiatric diagnoses describe clusters of problematic behaviors that tend to overlap across 

diagnoses(58), lack clear discernible boundaries(58), and exhibit high rates of comorbidity(59). 

Consequently, it is extremely difficult to isolate disorder-specific biomarkers. To understand the 

neurobiological processes that underlie distinct psychiatric illnesses, several different 

approaches have been posited. The dimensional approach proposes that psychopathology–and 

an individual’s vulnerability to a particular psychiatric illness–can be described along distinct 

dimensions of psychiatric illness(60, 61). Similarly, the internalizing-externalizing model 

suggests that psychiatric illnesses are manifestations of internalizing and externalizing 

dimensions(62), where internalizing dimensions affect an individual’s internal state and 

externalizing dimensions affect an individual’s external response to the world(63). An alternative 

theory, the p-factor, suggests a single factor of psychopathology makes individuals broadly 

vulnerable to psychiatric illness and the specific illness they develop is determined by other 

factors(64). Regardless of how we characterize distinct psychiatric illnesses, an understanding 

of their underlying associations with brain-based biomarkers is crucial for the development of 

personalized diagnostic approaches and treatment interventions. These present analyses 
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suggest behavioral prediction models may be broadly generalizable across dimensional 

measures and diagnosis-based scales, increasing their clinical utility. This generalizability 

paired with the overlap in the associations between connectivity and behavior suggests a 

shared set of functional connections may underlie general psychopathology, and the behavioral 

manifestation of that psychopathology may be influenced by other factors. By moving beyond 

the categorical medical model and integrating dimensional measures, we can improve our 

understanding of the range of psychiatric symptom profiles that may be associated with 

variability in brain functioning.   

 

Psychiatric illnesses and associated behaviors are harder to predict than cognition and exhibit 

weaker associations with neurobiological features(23, 24). Relatedly, brain-based models of 

internalizing behaviors and illnesses achieve weaker prediction accuracies than those of 

externalizing behaviors and illnesses(24). The general lack of predictability of internalizing 

behaviors may be related to individual differences in the signal-to-noise ratio in the associations 

between functional connectivity and the behaviors themselves. Furthermore, the presence of 

significant predictions of internalizing behaviors in females, but not in males, may be 

underscored by the earlier development of functional networks, and especially the heteromodal 

association networks, in females during childhood(8, 65). The delayed development of 

association networks–which drive these behavioral predictions–could in part explain the lower 

observed accuracies in males.  

 

Functional disruptions in heteromodal association networks are implicated across dimensions 

and disorders: affective and psychotic illnesses are related to frontoparietal control, limbic, 

default, and attention network connectivity(24, 51-54). Here, we find functional connections 

within and between those networks predict individual differences in psychiatric illness-linked 

behaviors across both sexes. These findings suggest the existence of transdiagnostic and 

disorder-specific functional signatures of psychiatric illnesses and illness-linked behaviors. 

Finally, shared genetic and environmental influences have been shown to underlie the covariant 

expression of negative affect, internalizing behaviors, and externalizing behaviors(66). Our 

results further suggest these traits may also share neurobiological influences, which may in part 

be driven by genetic and environmental influences on neurobiology itself.  

 

Sex differences in neurobiology and behavior have been studied extensively(2, 5, 7, 8, 67-80). 

More recently, researchers have examined sex differences in brain-behavior relationships(22, 
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35, 36, 45, 49). To explain the underlying factors driving these differences, sex-based and 

gender-based theories have been proposed. Sex-based theories posit that sex chromosomes, 

brain structure, the hypothalamic-pituitary-adrenal axis, immune processes, and gonadal 

hormones underlie sex differences in psychiatric illnesses, while gender-based theories 

emphasize the contributions of parental expectations, gender socialization, gender roles, gender 

identities, and diagnostic biases(3). Here, we demonstrate functional correlates of psychiatric 

illness-linked behaviors are largely shared across the sexes. Our inability to identify sex-specific 

correlates suggests that sex-independent and sex-specific models of psychopathology based on 

functional connectivity may yield generally similar predictions, as shown in our prior work 

focusing on cognitive behaviors(22). Furthermore, shared functional correlates are associated 

with the expression of internalizing and externalizing behaviors, of which, internalizing are 

generally more prevalent in females and externalizing in males(1). These findings suggest that 

differences observed in the expression of psychiatric illness-linked behaviors across the sexes 

during childhood may not be dependent on sex-specific functional connectivity profiles, 

indicating that sex- or gender- related factors are involved. Interestingly, in our current sample, 

we observed greater withdrawn/depressed and affective illness-linked behaviors in males than 

females, which contradicts the typical patterns reported in adolescents and adults(1-3). Impulse 

control disorders (which may be accompanied by some affective symptoms) emerge during 

childhood while mood disorders emerge during or after puberty(81, 82), Thus, our focus on the 

presentation of these behaviors and disorders in children rather than adolescents or adults may, 

at least in part, account for this discrepancy.  

 

These findings are subject to several limitations. First, these analyses relied on a large 

community-based sample of children between the ages of 9 and 10. As these children undergo 

puberty and go through adolescence, they will likely exhibit changes in their behavioral 

expressions and brain biology, particularly in the heteromodal association networks(83-86). As 

such, the underlying brain-behavior relationships are subject to change throughout the course of 

adolescence. Second, since the ABCD dataset does not include information about gender 

identity or fluidity at baseline, this study only used information about each subject’s parent-

reported sex at birth. Throughout the course of development, males and females are exposed to 

gender-differentiated experiences and enculturation. Given the lack of data pertaining to gender 

identity or expression in the data used here, we cannot disentangle whether the observed sex 

differences are driven by inherent sex differences in neurobiology and/or behavior, a 

manifestation of gender-related differences, or a combination of the two such that innate 
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biological differences are further exaggerated by sociocultural and environmental factors(87). 

Analyses of follow-up time points in ABCD (which include the Gender Identity Questionnaire) 

can address these open questions. Third, this study used a single dataset which was collected 

entirely in the United States. The dataset was acquired at different sites (and scanners) across 

the country suggesting these results are somewhat generalizable, but it does not represent the 

global extent of racial, ethnical, or cultural diversity. While we accounted for site effects, we did 

not account for effects of race/ethnicity or socioeconomic status. Thus, we cannot rule out the 

possibility that other factors did not bias our predictive performance(88, 89). As such, further 

research is needed to address whether these results are generalizable across populations(88, 

89) with known differences in the expression, diagnosis, and stigmatization of psychiatric 

illnesses(90-92). Fourth, the data release used here is an older release. Newer releases have 

addressed some of the issues present here (e.g., incorrect post-processing of data acquired on 

Phillips scanners) and include a greater number of subjects that can be included in subsequent 

analyses. Fifth, although a large proportion of the participants included exhibit minimal 

problematic behaviors, we did not consider diagnostic and medication information. Additional 

analyses in participants with psychiatric diagnoses or comorbidities taking medication would 

inform how both elevated illness risk and/or current pathology may alter the observed these 

brain-behavior relationships. 

 

An understanding of the neurobiological differences that exist in the presentation of psychiatric 

illnesses across the sexes is crucial for the development of accurate and reliable biomarkers for 

diagnosis and treatment. Here, we demonstrate that functional connectivity profiles associated 

with psychiatric illness-linked behaviors in children do not differ between the sexes. Based on 

these findings, we can speculate that males and females may default to distinct gender-specific 

socially acceptable presentations of the same underlying sex/gender-neutral mental distress 

along a spectrum of internalizing-externalizing behaviors. As such, a potential solution could be 

the development and implementation of diagnostic tools that can recognize that both 

internalizing and externalizing behaviors may represent the same underlying disease.   
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Figure Captions 

 

Figure 1: Experimental Workflow.  

(A) Population: We included 5260 children (9-10 years old) from the Adolescent Brain Cognitive 

Development (ABCD) dataset, including 2689 males (51%) and 2571 females (49%). (B) 

Behavioral Data: We included 17 behavioral scores from the Child Behavior Checklist which 

includes syndrome scales and DSM-5 oriented scales. Syndrome scales included measures of 

composite and individual internalizing behaviors (shown in blue), composite and individual 

externalizing behaviors (shown in orange), other problems (shown in green), and a summary 

score of total problems (red). DSM-5 Oriented Scales included scores relating to affective, 

anxiety, somatic, oppositional defiant, conduct, and attention deficit/hyperactivity (ADHD) 

disorders. (C) Parcellation: We used the Schaefer cortical parcellation of 400 regions, and each 

region was assigned to one of 17 large-scale cortical networks. Image reproduced under a CC 

BY 4.0 license: https://doi.org/10.6084/m9.figshare.10062482.v1. We also included 19 

subcortical regions in our analyses, which were assigned to a subcortical network. Image 

reproduced under a CC BY 4.0 license: https://doi.org/10.6084/m9.figshare.10063016.v1. (D) 

Neuroimaging Data: For each subject, we extracted their functional MRI time series data for the 

400 cortical parcels and 19 subcortical parcels. Pairwise correlation was computed for all pairs 

of time series to obtain the estimated functional connectivity. (E) Predictive Models: Linear ridge 

regression models were trained to predict individual behavioral scores based on the upper 

triangular functional connectivity matrix in a sex-specific manner. Data were split into training 

and test sets. For each training set, a separate model was optimized and trained to predict each 

behavior. Once optimized and trained, models were evaluated for accuracy and generalizability. 

Prediction accuracy is defined as the correlation between the true and predicted behavioral 

scores in the test set for each split. We computed average accuracy by taking the mean across 

the distinct train-test splits. Once models were trained and tested within sexes and behaviors, 

we evaluated model generalizability across both sexes and all 17 behavioral scores. Model 

generalizability is defined as the accuracy obtained when a given model is evaluated on a 

population (i.e., sex) and/or behavioral score that is unique from the population/behavioral score 

that the model was trained on. This is distinct from model accuracy which is defined as the 

prediction accuracy obtained when evaluating the model on the same populations (i.e., sex) and 

behavioral score (using a hold-out test set) that it was trained on.  

 

Figure 2: Predictive models of psychiatric illness-linked behaviors are accurate and 

generalizable across sexes and behaviors.  

(A) Model Accuracy: Model prediction accuracy (correlation coefficient between true and 

predicted scores) for all behaviors for males (left) and females (right). Black asterisks (*) denote 

that model performed significantly better than chance (corrected p<0.05). The shape of the 

violin plots indicates the entire distribution of values, dashed lines indicate the median, and 

dotted lines indicate the interquartile range. (B) Model Generalizability: Model generalizability 

across sexes and behaviors for all models. Results from models trained in males are shown at 

the top, and models trained in females at the bottom. Results from models tested in males are 

shown on the left, and models tested in females on the right. Prediction accuracy (correlation 

coefficient between true and predicted scores) is shown for all predictions that performed better 
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than chance (corrected p<0.05) as per the color scale. For predictions that did not perform 

better than chance, the corresponding space is left blank. Model accuracy is shown along the 

diagonal for the male-trained male-tested and female-trained female-tested models 

(corresponding violin plots shown in Figure 2A). Dashed black boxes highlight sex differences in 

generalizability across behavioral domains. 

 

Figure 3: Shared functional connectivity features underlie distinct behaviors across the 

sexes.  

Correlation coefficient between Haufe-transformed pairwise regional feature weights from 

distinct models. Models trained in males are shown at the top and on the left, models trained in 

females are shown at the bottom and on the right. Warmer colors indicate a positive correlation 

and cooler colors indicate a negative correlation. Solid black boxes highlight correlations 

between feature weights within behavioral domains within and between sexes.  

 

Figure 4: Shared network-level functional connections underlie withdrawn/depressed 

behaviors in males and females.  

Positive (top) and negative (bottom) associations between network-level functional connectivity 

and rule-breaking behaviors in males (left) and females (right). Regional feature weights were 

summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and 

subcortical regions to a subcortical network. Colors next to the network labels along the vertical 

and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the 

heatmap indicate a positive association and cooler colors indicate a negative association. For 

visualization, values within each matrix were divided by the absolute maximum value across the 

positive and negative matrices for each sex. Correlations between positive associations across 

sexes, rpositive=0.89. Correlations between negative associations across sexes, rnegative=0.72.  

 

Figure 5: Shared network-level functional connections underlie rule-breaking behaviors 

in males and females.  

Positive (top) and negative (bottom) associations between network-level functional connectivity 

and rule-breaking behaviors in males (left) and females (right). Regional feature weights were 

summarized to a network-level by assigning cortical regions to one of 17 Yeo networks, and 

subcortical regions to a subcortical network. Colors next to the network labels along the vertical 

and horizontal axes correspond to the network colors from Figure 1C. Warmer colors within the 

heatmap indicate a positive association and cooler colors indicate a negative association. For 

visualization, values within each matrix were divided by the absolute maximum value across the 

positive and negative matrices for each sex. Correlations between positive associations across 

sexes, rpositive=0.90. Correlations between negative associations across sexes, rnegative=0.94. 
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